prucommercialre.com


Cómo analizar normal Variación y Probabilidad para Six Sigma

Todos los datos de proceso y de producto en proyectos de Six Sigma tienen variación; cada instancia repetida de cualquier punto de datos medido es diferente de la instancia antes. Y como el conjunto de medidas repetidas se acumula, una forma comienza a formarse.

Datos reales generalmente se agrupan en torno a un valor central, y la aparición de puntos de datos cada vez más lejos del valor central disminuye. Esta configuración es la clase en forma de campana clásico de la variación que constantemente ejecuta a través.

Cómo analizar normal Variación y Probabilidad para Six Sigma

El modelo normal representa la densidad de todas las probabilidades de un proceso o producto típico - todos pasadas, actuales y futuras de la característica en su configuración actual.

El eje horizontal se escala para unidades de desviación estándar de la distribución. Y aunque la figura muestra sólo la curva de campana de -4 desviaciones estándar a 4 desviaciones estándar, de hecho, se extiende hasta el infinito negativo de la izquierda y todo el camino hasta el infinito positivo a la derecha.

El eje vertical mide la densidad de probabilidad para cada valor de la medición desde el infinito hasta el infinito negativo positivo; cuanto mayor es la curva de la campana, mayor es la probabilidad de que el valor correspondiente en el eje horizontal que se produzcan.

Observe que la curva normal es siempre positiva; es decir, su valor nunca es cero o negativo. También es perfectamente simétrico; si usted dobla la curva en su apogeo, las mitades derecha e izquierda coinciden perfectamente. El valor promedio - llamado μ para el modelo perfecto - se produce en el pico o el centro de la campana.

La desviación estándar - llamada σ para el modelo perfecto - es equivalente a la distancia horizontal desde el centro de la curva (la media, o μ) a cualquier punto de la curva donde sus forma cambia de cóncava a convexa. En la Figura 12-1, con la escala horizontal en unidades de desviaciones estándar, se puede ver que esta distancia se produce en los puntos de medición de -1 y 1.

Un último punto a tener en cuenta sobre el modelo normal es que, si se mide el área encerrada por la curva de campana y el eje horizontal, desde menos infinito a más infinito, siempre es igual a 1. Es decir, el área total bajo la curva normal representa 100 por ciento de todas las posibilidades - con 50 por ciento de caer encima de la media y el 50 por ciento por debajo.

Trabajando desde el infinito negativo y positivo, si se calcula el área bajo la curva normal entre las desviaciones estándar -3 y 3, el resultado es 0,997, o el 99,7 por ciento de los posibles resultados de la característica del proceso. Más lejos, en, entre -2 y +2 desviaciones estándar, alrededor del 95 por ciento se capturan todas las posibilidades. Y 68 por ciento de todas las posibilidades se encuentran entre -1 y 1 desviaciones estándar.

Cómo analizar normal Variación y Probabilidad para Six Sigma

Debido a la simetría del modelo normal, puede utilizar estas mismas probabilidades de área para determinar las posibilidades que están más allá de los parámetros. Por ejemplo, porque el 99,7 por ciento de todas las posibilidades de resultados se encuentran entre -3 y 3 desviaciones estándar, usted sabe que el 0,3 por ciento de posibilidades debe estar más allá de las desviaciones estándar -3 y 3, con un 0,15 por ciento inferior a -3 desviaciones estándar y 0,15 por ciento mayor que 3 desviaciones estándar.

Y de manera similar, ya que aproximadamente el 95 por ciento de probabilidades se encuentran entre -2 y 2 desviaciones estándar, aproximadamente 5 por ciento de probabilidades debe estar más allá de las desviaciones estándar -2 y +2. En todos estos ejemplos, se puede ver que todas las posibilidades se combinan siempre al 100 por ciento.

Piense en un caso especial del modelo normal, donde el promedio es igual a cero (μ = 0) y la desviación estándar es igual a uno (σ = 1). Una distribución normal de estos parámetros exactos se llama el estándar de ninguna distribución r mal.

Los estadísticos han dedicado mucho tiempo al estudio de la distribución normal estándar. Una de las cosas importantes que han hecho es tabular el área bajo la curva normal estándar para distintos valores de medición.

Cómo analizar normal Variación y Probabilidad para Six Sigma

Las etiquetas de fila en el extremo izquierdo de esta tabla normal estándar corresponden a varias distancias más o menos del centro cero de la distribución normal estándar. Las etiquetas de las columnas en la fila superior agregan un segundo decimal a las distancias. Los contenidos de las celdas se corresponden con la probabilidad más allá de la distancia especificada.

Cómo calcular la probabilidad por encima o por debajo de un valor único

En las herramientas estadísticas de Six Sigma, que con frecuencia calcular probabilidades utilizando la tabla normal estándar. Por ejemplo, usted puede fácilmente buscar el área bajo la curva normal estándar superior a 1,24 en la tabla.

La probabilidad de la mesa es 0,107488. Así, para una distribución normal con media de 0 y desviación estándar de 1, la probabilidad de observar un valor de datos es mayor que 1,24 0,107488 (10,7 por ciento). Debido a la simetría del modelo, esta cifra es también la probabilidad exacta de observar un valor de menos de -1,24.

Pero eso no es todo! El uso de la idea de las probabilidades complementarias, se puede calcular un 1-0,107488 = 0,892512 (89,3 por ciento) probabilidad de observar una medida menos de 1,24 (ya la inversa, un 89,3 por ciento de probabilidad de observar una medida mayor que -1,24). Echa un vistazo a la figura 12-5 para ver estas probabilidades en acción.

Cómo calcular la probabilidad entre o fuera de dos valores

Averiguar las probabilidades de los valores individuales es relativamente simple. Averiguar cuánto área (probabilidad) es bajo la curva normal estándar entre dos valores finitos es sólo más difícil un poco. Por ejemplo, ¿cuál es el área bajo la curva normal estándar entre los valores de los ejes horizontales de 1,87 y 2,05?

Cómo analizar normal Variación y Probabilidad para Six Sigma

Por lo demás, ¿cómo diablos se supone que debes determinar esa zona si sólo se puede buscar un valor de probabilidad en la tabla de probabilidad normal estándar a la vez?

Cómo analizar normal Variación y Probabilidad para Six Sigma

Por otro lado, tiene un 1-,10560 = 0,89440 (89,4 por ciento) la probabilidad de observar un valor fuera de este intervalo. Estas probabilidades se corresponden con una característica de proceso que tiene una media de 0 y una desviación estándar de 1.

Cómo analizar normal Variación y Probabilidad para Six Sigma